Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Jun-Hong He, Lei Yue, Xiao-Zeng Li, Wen-Qin Zhang* and Bao-Lin Liu

Department of Chemistry, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail: lixiaozeng321@tju.edu.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.005 Å Disorder in main residue R factor = 0.037 wR factor = 0.105 Data-to-parameter ratio = 11.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[Dimethyl 5,6,7,8,15,16-hexahydro-6,7-dioxo-5,8,14,17-tetraazadibenzo[a,g]cyclotetradeca-3,9,13,17-tetraene-13,18-dicarboxylato- $\kappa^4 N$,N',N''',N'''']copper(II)

In the title complex, $[Cu(C_{22}H_{18}N_4O_6)]$, the Cu^{II} atom is coordinated by four N atoms from a macrocyclic ligand with a square-planar geometry. Weak C-H···O hydrogen bonding occurs between neighbouring Cu^{II} complexes in the crystal structure. Received 20 October 2005 Accepted 21 November 2005 Online 26 November 2005

Comment

Macrocyclic complexes have received considerable attention because of their applications in biology, medicine and chemical techniques (Costamanga *et al.*, 2000; McAuley *et al.*, 2000; Hubin, 2003; Liang & Sadler, 2004; Li *et al.*, 2005). Five CuL' complexes incorporating a macrocyclic oxamide Schiff base (L' is dialkyl 5,6,7,8,15,16-hexahydro-6,7-dioxo-5,8,14,17tetraazadibenzo[a,g]cyclotetradecene-13,18-dicarboxylate) have been synthesized to date (Black & Moss, 1987; Gao *et al.*, 2000, 2001), of which three complexes have been characterized crystallographically (Gao *et al.*, 2000, 2001). Here, we report the crystal structure of the title complex, CuL, (I) (*L* is dimethyl 5,6,7,8,15,16-hexahydro-6,7-dioxo-5,8,14,17-tetraazadibenzo[a,g]cyclotetradecene-13,18-dicarboxylate).

The molecular structure of (I) is illustrated in Fig. 1. The macrocyclic ligand L coordinates to the Cu^{II} atom through the imine N atoms and the deprotonated oxamide N atoms, with a square-planar geometry [maximum deviation 0.059 (3) Å for atom Cu1]. The plane of the oxamide group is tilted relative to the coordination plane with a dihedral angle of 11.2 (8)°. The benzene rings of L are nearly coplanar with the coordination plane, the dihedral angles between the coordination plane and the phenyl rings being 5.2 (8) and 2.9 (8)°.

 $\ensuremath{\mathbb{C}}$ 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

The molecular structure of (I), with 30% probability displacement ellipsoids. The minor disordered component has been omitted for clarity.

Weak C-H···O hydrogen bonding (Table 2) stabilizes the crystal structure.

Experimental

Dimethyl 2,2'-(oxalyldiimino)bis(phenylglyoxylate) was prepared by the literature method of Black & Moss (1987). Dimethyl 2,2'-(oxalyldiimino)bis(phenylglyoxylate) (0.05 mmol), Cu(OAC)₂·H₂O (0.05 mmol) and ethylenediamine (0.05 mmol) were dissolved in a solution of triethylamine (0.3 ml) and methanol (12 ml). The mixture was refluxed for 20 h and then filtered. Crystals of (I) were obtained from the filtrate. Spectroscopic analysis: IR (KBr, ν , cm⁻¹): 1743, 1650, 1605, 1595, 1476, 1140. (IR spectra were recorded on a BIO-RAD FTS 3000 infrared spectrophotometer). The crystals remain solid up to 505 K, at which temperature they decompose. Analysis, calculated for CuC₂₂H₁₈N₄O₆: C 53.06, H 3.64, N 11.25%; found: C 53.19, H 3.72, N 11.36%.

Crystal data

$[Cu(C_{22}H_{18}N_4O_6)]$	$D_x = 1.636 \text{ Mg m}^{-3}$
$M_r = 497.94$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 2259
a = 9.6256 (15) Å	reflections
b = 15.676 (3) Å	$\theta = 2.5 - 23.2^{\circ}$
c = 13.502 (2) Å	$\mu = 1.13 \text{ mm}^{-1}$
$\beta = 97.223 \ (2)^{\circ}$	T = 293 (2) K
V = 2021.1 (5) Å ³	Block, brown
Z = 4	$0.24 \times 0.20 \times 0.14 \text{ mm}$
Data collection	
Bruker SMART APEX II CCD	3567 independent reflections
area-detector diffractometer	2529 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.036$
Absorption correction: multi-scan	$\theta_{\rm max} = 25.0^{\circ}$
(SADABS; Sheldrick, 1996)	$h = -10 \rightarrow 11$
$T_{\min} = 0.694, T_{\max} = 0.854$	$k = -16 \rightarrow 18$

 $l = -16 \rightarrow 16$

 $I_{\min} = 0.694, I_{\max} = 0.854$ 10870 measured reflections

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0592P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.037$	+ 0.1852P]
$wR(F^2) = 0.105$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.01	$(\Delta/\sigma)_{\rm max} < 0.001$
3567 reflections	$\Delta \rho_{\rm max} = 0.29 \text{ e} \text{ \AA}^{-3}$
319 parameters	$\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Table 1

Selected geometric parameters (Å, °).

Cu1-N1	1.919 (2)	N1-C18	1.395 (4)
Cu1-N2	1.918 (2)	N2-C3	1.403 (4)
Cu1-N3	1.940 (3)	N3-C9	1.280 (4)
Cu1-N4	1.940 (3)	N4-C12	1.276 (4)
N2-Cu1-N1	88.06 (11)	N2-Cu1-N3	93.84 (11)
N2-Cu1-N4	174.45 (12)	N1-Cu1-N3	175.81 (10)
N1-Cu1-N4	93.78 (11)	N4-Cu1-N3	83.99 (11)

Table 2			
Hydrogen-bond geometry	(Å,	°).	

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
$C10' - H10D \cdots O6^{i}$ $C20 - H20B \cdots O2^{ii}$	0.97 0.96	2.39 2.40	3.155 (12) 3.319 (5)	136 159
Symmetry codes: (i) $-r - v - z + 1$; (ii) $r - 1 - v + \frac{1}{2} z - \frac{1}{2}$				

Symmetry codes: (i) -x, -y, -z + 1; (ii) $x - 1, -y + \frac{1}{2}, z - \frac{1}{2}$.

Atoms C10 and C11 are disordered over two sites with the same occupancy of 0.5. Methyl H atoms were placed in calculated positions with C-H = 0.96 Å and torsion angles refined to fit the electron density, with $U_{\rm iso}(\rm H) = 1.5 U_{eq}(\rm C)$. Other H atoms were placed in calculated positions with C-H = 0.93 (aromatic) or 0.97 Å (methylene), and refined in riding mode, with $U_{\rm iso}(\rm H) = 1.2 U_{eq}(\rm C)$.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1997); software used to prepare material for publication: *SHELXTL*.

The authors thank Tianjin Normal University for assistance in the X-ray diffraction data collecion.

References

- Black, D. St C. & Moss, G. I. (1987). Aust. J. Chem. 40, 129-142.
- Bruker (1997). *SMART* (Version 1.0-22), *SAINT* and *SHELXTL* (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.
- Costamanga, J., Ferraudi, G., Matsuhiro, B., Campos-Vallette, M., Canales, J., Villagrán, M., Vargas, J. & Aguirre, M. J. (2000). *Coord. Chem. Rev.* **196**, 125–164.
- Gao, E.-Q., Bu, W.-M., Yang, G.-M., Liao, D.-Z., Jiang, Z.-H., Yan, S.-P. & Wang, G.-L. (2000). J. Chem. Soc. Dalton Trans. pp. 1431–1436.
- Gao, E.-Q., Nie, Y., Sun, H.-Y. & Liao, D.-Z. (2001). Chin. J. Struct. Chem. 20, 183–186.
- Hubin, T. J. (2003). Coord. Chem. Rev. 241, 27-46.
- Li, X.-Z., He, J.-H. & Liao, D.-Z. (2005). Acta Chim. Slov. 52, 332-335.
- Liang, X.-Y. & Sadler, P. J. (2004). Chem. Soc. Rev. 33, 246–266.
- McAuley, A. & Subramanian, S. (2000). Coord. Chem. Rev. 200, 75-103.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.